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ABSTRACT

Mittet, R. and Arntsen, B., 2000. A 3D elastic hybrid modeling scheme. Journal of Seismic
Exploration, 9: 117-141.

Full scale 3D elastic finite-difference modeling requires very large CPU times. A hybrid
modeling scheme which combines an elastic cylinder symmetric finite-difference modeling scheme
with a 3D elastic finite-difference modeling schemes can reduce the CPU time considerably. The
main limitation is that the overburden must be close to a plane-layer geology. The coupling of the
two schemes is performed using an elastic representation theorem. Calibration of the hybrid scheme
by comparison with the solution from a frequency wavenumber algorithm give good results. The fit
between full 3D modeling results and hybrid modeling results for more complicated models is also
acceptable.

KEY WORDS: hybrid modeling, 3-D modeling, finite-difference modeling, elastic wave
propagation, complex geometry, synthetic 3D data.

INTRODUCTION

A modeling scheme giving realistic synthetic seismic data have several
areas of application. One such area is verification of interpretation. If a model
of the medium is constructed based on seismic and other data, then there should
be some similarity between synthetic seismic data and measured seismic data,
given that the modeling algorithm is sufficiently accurate. If this similarity is not
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there, then either the interpreted model is not sufficiently close to the true model
or the modeling scheme is not sufficiently advanced. Synthetic seismic data may
also be used for survey planning. If the geometry of the main reflectors are
known, then an optimal experimental configuration in terms of shot and receiver
positions may be determined from modeling studies. In addition, the
performance of processing software may be evaluated using synthetic data, since
the processed result can be matched against the true model.

If the model to be investigated has a typical 2D geometry, then 2D
finite-difference simulations may give sufficiently realistic synthetic data. All
important wave modes are included but the geometrical spreading is not correct.
A general absorption mechanism can be included in a 2D modeling scheme, but
to allow for general anisotropic properties a 3D modeling scheme must be used.
If a realistic response from a model which has a typically 3D geometry is
required, then some type of 3D modeling scheme must be used. All wave modes
and conversions should be included. Explicit finite-difference schemes may
include all these effects. The problem, however, is that such schemes are
computationally expensive. The scaling of the 3D modeling problem is.typically
d*, which means that if the number of grid nodes are increased with a factor d
in the three spatial dimensions, then the number of time steps must be increased
with a comparable factor in order to include the relevant response. As an
example, let Ny, Ny and N, be the number of nodes in. the three spatial
directions and Ny the number of time steps. If optimized derivative operators
with halflength L. (Holberg, 1987) are used, then the number of numerical
operations needed to calculate the response of a single shot in the purely elastic
case is,

N,, = Ny Ny N, N [183L~1) + 52] . (1)

A typical model may be 3500 m in the three spatial directions with a
steplength of 10 m. As a minimum, 3 s of data should be generated, and a
typical time step may be 0.001 s. Choosing an operator halflength of 6 implies
that the calculation can be performed at 2.6 grid points per shortest wavelength.
For the purely elastic problem, neglecting absorption and anisotropy, the CPU
time at 1 Gflops is 13 hours. This may be acceptable for experiments with a few
shots, but not for simulation of a marine survey with several hundreds of shots
or more. To resolve this problem with the indicated computer resources and
without inventing a completely new modeling method some approximation must
be performed.

The solution is in this work limited to typically North-Sea problems where
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If a plane-layered overburden is assumed, then a cylindrical-symmetric
scheme can be used here to calculate the Greens tensor. This scheme obeys 3D
elastic wave propagation. Normally, a cylindrical-symmetric scheme gives the
solution as a function of radial coordinate r and depth coordinate z, but the
symmetries of the elastic field can be used to find the solution on a horizontal
surface at a desired depth in the model. The symmetries of the field can also be
used to convert the cylindrical-symmetric Greens tensor to a Cartesian Greens
tensor. The elastic field on this coupling surface serves as a boundary condition
for the modeling scheme used in the deeper part of the model. In the deeper part
of the model a full scale 3D elastic finite-difference scheme is used.

This hybrid method reduces the size of the full 3D modeling problem in
three ways. Firstly, the actual size of the 3D grid is reduced since the 3D elastic
finite-difference scheme is used in the deeper part of the model only. Secondly,
the spatial sampling intervals may be increased since the S-wave velocities
generally are higher at larger depths. Increased spatial sampling intervals implies
less nodes and hence a reduced number of numerical operations. Thirdly, the
3D elastic finite-difference scheme can be solved for a reduced number of
timesteps. The initial time of the 3D simulation is given by the time the field
requires to reach the depth where the 3D elastic finite-difference scheme is used
and the final time is given by the desired time for the shot record minus the time
required to propagate the solution from the depth where the 3D elastic
finite-difference scheme is used up to the receivers. The CPU time required to
perform the cylinder-symmetric modeling in the overburden is negligible
compared to the CPU time of the full 3D elastic finite-difference scheme. The
reduction factor in CPU time using the hybrid scheme as compared to the full
3D elastic scheme is model dependent, but is typically of order 10 (5-15) for a
full size model, however for models with high velocity contrasts from top to
bottom and a deep target volume the reduction factor may be of order 100.

It is nothing in the formalism presented here that prevents the
cylinder-symmetric finite-difference scheme from being substituted with a 3D
ray-tracing algorithm. This would allow for a more general geology in the
overburden at the possible cost of neglecting important events in the overburden.
If the overburden has no symmetries, then the Green’s tensor from each node
at the coupling depth to each receiver must be calculated. This may be a time
consuming process. ‘

THEORY

The basic properties of the model are shown in Fig. 1. The model consist
of a plane-layer geology over a 3D generally inhomogeneous target volume. The
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Fig. 1. The model is separated into two volumes. The green and red arrows indicate the part of the
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be coupled. This coupling is formally performed at a horizontal surface with
coordinate x.. The problems of using a single coupling surface will be discussed
in a separate section. The present solution will be to split this surface into two
surfaces, where the downgoing field is a boundary condition at x. and the
upgomg field is a boundary condition at x;, where x; is slightly above x.. It is,
in principle, possible to obtain the complete solutlon to the wavefield for these
types of models using the indicated hybrid modeling method (dynamic
coupling), but in order to reduce overall CPU time a simplified solution (static
coupling) is chosen. In this simplified approach, all direct events and
conversions plus the internal multiples in the overburden are included in the
shotgather. The direct events and conversions plus internal multiples in the
target volume are also included, but internal multiples interacting both with the
overburden and the target volume are neglected. These events could have been
included using the dynamic coupling approach. In the dynamic coupling
approach the cylinder-symmetric and full 3D scheme must run simultaneously
with coupling of the fields for each timestep. In the static approach the
cylinder-symmetric modeling can be performed before running the full 3D
scheme.

Let the source be located at x, and the receivers at x,. Three
finite-difference simulations are needed to generate the desired response. An
elastic cylindrical-symmetric finite-difference calculation can generate the
response at X, due to reflections in the overburden. The same calculation can
generate a downgoing field at the coupling depth x.. This downgoing field
serves as a boundary condition for a full 3D finite-difference calculation giving
the response from the target volume. The resulting upgoing field from this
simulation is recorded at x! and serves as a new boundary condition. A second
cylindrical-symmetric finite-difference simulation is performed in order to obtain
the Green’s tensor which can propagate the field from x; to x,.

In the present version of the hybrid scheme a marine experimental
configuration is assumed. Thus, the source is located in the water layer and
hydrophone measurements are performed. It is further assumed that the elastic
part of the model is isotropic.

The elastic Green’s tensor Gy, is given by the equation

a%Gijmn(X’t|X,’t’) - Ciqu(x)[app_1(X)aqukmn(x’tlX,’t,)]

Cijmn(x)a(x - X,)a(t - t,) ’ . ' (2)

where the elastic Hooke’s tensor reduces to
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in the isotropic case. Here A and p are the Lamé parameters and p is the
density.

With the Green’s tensor from equation (2), the stress tensor is given as
in Mittet et al. (1994),

t*]
om0 = | dt' | dx'Goyx,t—t'[x',0)000 x)E X 1)
0 -
+ § dt § dSE){Gpmyx,t—t'|x",0)na(x' ')
0 S
= [0{Gmi(x,t—t" | x',0)]t;(x",t") }
+ | x{[0, Gy (.t =t | X' 0)]e(X'.1")
— G, t—t'[X",000,65(x",t)} o - @
Here, o, is a component of the stress tensor, a; is a component of the particle

acceleration vector, €; is a component of the strain tensor and the reduced
traction, t;, is given by,

t(x',t") = nyo;,(x",t")/p(x") , ‘ ©))

where n; is a component of the surface normal. Assuming initial and final
condition to be zero, equation (4) can be separated into a contrlbutlon due to the
exciting force fi(x’ t)

ol (x,t) = 5 dt’ S @' Gpij(x,t—t' | x,008]0 XN (X',1) 6)
0
and a boundary value contribution,
"
bkt = § dt’ § dSE){Gpy(x,t—t'| X', 0)na(x' )
0 S
= [0{G(x,t—t [ X", 0)]t;(x",t)} . @)
If the field representing the boundary condition is propagating in one
direction only, then it is sufficient to know the boundary condition on a
horizontal surface which in principle must have infinite aperture, the need for

a closed surface integral can be relaxed.

Within the given approximation, the field due to a source at x; is purely
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excited by the source and modeled with the cylindrical-symmetric scheme, with
the 3D finite-difference simulation and to couple the upgoing 3D finite-
difference response from the target volume with the cylindrical-symmetric
Greens tensor giving the pressure response at the receivers. The total pressure
response at the receivers are found from a summation of the pressure given in
equation (A-7) and the pressure given in equation (C-2).

BOUNDARY CONDITIONS

The boundary condition for the stress field is given in equation (7). This
boundary condition, input to the 3D finite-difference scheme, is calculated with
the cylindrical-symmetric finite-difference scheme and represents a downgoing
field at the coupling surface at depth z,. If the boundary condition is properly
implemented at the coupling surface, then it results in a purely downgoing
traction field at this depth. The total traction response at this coupling surface
is this downgoing traction plus the upgoing traction resulting from reflections
below z.. In order to have a purely upgoing traction-field at depth z., needed for
extrapolation of the field at this depth up to the receivers, the downgoing
traction should be subtracted from the total traction response. This is a straight
forward procedure.

The boundary condition used here give a purely downgoing traction at and
below z.. This leads to a stress tensor in the 3D elastic modeling scheme which
is zero above z,. This points to a step-like behavior in depth of the stress field.
The corresponding acceleration components can be obtained from the equation
of motion and are proportional the z-derivatives of some of the stress field
components. This gives a delta-function behavior of the acceleration field at the
coupling depth z, which is added to the downgoing and upgoing acceleration
components at z. In order to have a purely upgoing acceleration field at depth
z. the delta-function contribution and the downgoing acceleration should be
subtracted from the total acceleration response. Band-limited delta-function are
difficult to treat in numerical schemes and a method which satisfactorily
removed this delta-function (less than 1 percent error) independent of steplengths
and frequency content was not found. The hybrid scheme can also be
implemented with the boundary condition for the displacement (Aki and
Richards, 1980). In this case the displacement field have a step-like behavior at
depth z, and there are delta-function contributions to the stress field which must
be removed. Thus, the problem is not solved using this representation theorem
as compared to the one given in equation (7).

A method which seems to work satisfactorily is to split the coupling
surface at depth z. into two. A new coupling surface at depth z/ is introduced.
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that only upgoing fields are recorded at depth z. and these fields serve as the
boundary condition for propagating the field to the receivers using the Greens
tensor calculated with the cylindrical-symmetric scheme. There is still a
delta-function contribution centered at depth z_, but this contribution is not seen

at depth z..

Cylindrical-symmetric finite-difference.

—
—

Full 3D finite-
difference.
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NUMERICAL EXAMPLES

The finite-difference modeling program used here can be started in three
different modes. A pure cylindrical-symmetric calculation assuming a
plane-layer earth model can be performed, a pure 3D finite-difference
calculation can be performed or a hybrid calculation can be performed. In the
case of a plane-layer model these three schemes should give the same response
if the interaction between the overburden and the target volume is sufficiently
small. The last criterion is relevant only for the hybrid scheme. A cross section
of a plane-layer 3D model is shown in Fig. 3 and the parameters are specified
in Table 1. This model is used for calibration of the three modeling schemes.
As a reference, the response for this model is also calculated using the OSIRIS
modeling package. The OSIRIS modeling package is based on a direct global
matrix method (Schmidt and Jensen, 1985).

Table 1. Physical parameters of each layer for plane-layer model.

| Layer || Depth [m] | plkg/m’] |V} [m/s] | Vi [m/s] ||

I 195 1000 1500 0
I1 495 2000 2000 1200
I11 00 2500 2500 1500
I
195 m
IX
B00 M L oer e cccccvmseamanmamkmocamesamanmemraesmemae s n oo
495 m

IIX
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Table 2. Approximate arrival times at offset 100 m.

I Event | Arrival time [s] ||
Direct wave 0.1
Water bottom reflection 0.30
First water bottom multiple 0.56
Second water bottom multiple 0.82
P-wave reflection from second interface 0.60
S-wave reflection from second interface 0.70
P-wave multiple in second layer 0.75
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Fig. 4. OSIRIS and cylindrical-symmetric finite-difference response.
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with some small deviations for the combined event starting at 0.56 s at the
nearest offset. This event is an interference pattern of the first water-bottom
multiple and the P-P reflection at the second interface. The event starting at 0.7
s is from the downgoing P-wave reflected as an S-wave at the second interface
and then converted to a P-wave at the water bottom, before reaching the
hydrophones. The amplitude of this event clearly increases with increasing
offset. In Fig. 5 the OSIRIS modeling response and the 3D finite-difference
response are plotted. The 3D finite-difference response and the ‘cylindrical-
symmetric response are identical so there is a good fit also for these two
modeling methods. The OSIRIS modeling response and the hybrid response are
shown in Fig. 6. The coupling depths for the hybrid modeling are at
approximately 400 m. Also here a good fit between the modeling responses is
obtained. The internal multiple in layer II, expected to arrive at 0.75 s at near
offsets, is not included in the hybrid modeling response. The amplitude of this
event seems to be negligible since the number of events appear to be similar in
the two shotgathers. The fit between the two shotgathers is somewhat poorer at
high offsets, compared to the two previous examples. This may be an aperture
effect since the boundary surface at depth z; have a limited aperture in order to
minimize CPU time.
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Fig. 6. OSIRIS and hybrid modeling response.

In Fig. 7 the cross section of a faulted 3D model is shown. The
parameters are as for the previous model, but the second interface has here a
step behavior. The response for this model can be calculated correctly with the
full 3D modeling scheme only. The hybrid modeling scheme may give good
approximate solution, whereas the OSIRIS and the pure cylindrical-symmetric
finite-difference schemes can give plane-layer responses only. The result of
comparing the 3D finite-difference response for the second model with the
OSIRIS response for the first model is shown in Fig. 8. As expected, the two
shotgathers are different at small offsets where the two models are different and
similar at higher offsets where the two models are identical. In Fig. 9 the 3D
finite-difference response for the faulted model is plotted with the
cylindrical-symmetric finite-difference response for a plane-layer model with the
second interface at depth 595 m. The differences are here small at small offsets
where the models are identical and the differences are larger at higher offsets
where the models are different. The 3D finite-difference shotgather and the
hybrid modeling shotgather for the faulted model are plotted in Fig. 10. Here
the fit is fairly good at all offsets. The small differences can probably again be
explained by the limited aperture of the coupling boundarv at depth z.. The
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Fig. 7. Faulted model. The source is indicated with a red star. The receivers are indicated with blue
stars. The coupling depths for the hybrid scheme are indicated with the dashed line.
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Fig. 9. 3D finite-difference and cylindrical-symmetric response.

The scheme is also tested for a larger model with a 3D geometry. The
model is shown in Fig. 11. The model has a surface area which is 4 km by 4
km and it is 3 km in depth. The model is built from three subvolumes each
having a similar fault structure in the inline (x-) direction. The fault structure
is deepest for the central part of the model. The source is located at x=900 m,
y=2000 m with a depth of 10 m. The receivers have offsets from 1000 m to
3000 m with y=2000 m and depth 10 m. Thus, the experiment is performed
over the central block and noticeable side-scatter effects should appear.

Three modeling runs were performed. First a full 3D elastic modeling was
performed in order to obtain a reference shotgather. Then a cylinder-symmetric
modeling was performed. The density and velocity models as functions of depth
were taken from the 3D model at x-position 950 m and y position 2000 m. This
is midway between the source and the nearest offset hydrophone. Finally a
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The resulting reference shotgather is shown in Fig. 12, the shotgather
resulting from the cylinder-symmetric modeling is shown in Fig. 13 and the
result .of the hybrid modeling is shown in Fig. 14: For comparison selected
traces from the reference shotgather and the shotgather resulting from the
cylinder-symmetric modeling is shown in Fig. 15. As expected, the traces
coincide at the earliest times when only the plane-layer response is measured.
At later times the reference shotgather contain the full 3D response of the model
and the two. shotgathers differs significantly. For more detail the traces at offset
1600 m are shown in Fig. 16. Selected traces from the reference shotgather and
the shotgather resulting from the hybrid modeling is shown in Fig. 17. There
are some small differences, but the fit between the two datasets is good at all
times and offsets. For more detail the traces at offset 1600 m are shown in Fig.
18. The remaining differences can probably be contributed to the limited
aperture of the coupling surfaces and to the neglected multiple interactions
between the overburden and the target volume. However, these modeling results
indicate that the events not included in the hybrid modeling are small and that
acceptable results can be obtained with the hybrid modeling scheme, even for
3D models with a complicated target volume. The modeling were run on 8
Silicon Graphics R10000 processors. For this particular example, the reduction
in CPU time was a factor 11 using the hybrid modeling scheme as compared to
the 3D modeling scheme.
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Fig. 13. Cylinder-symmetric modeling response. Traces are scaled with t2.
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Fig. 15. Selected traces for reference data and cylinder-symmetric data. The time scale is from 1
second to 3 seconds. Traces are scaled with t2.
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seconds. Traces are scaled with t2.
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CONCLUSION

A hybrid modeling scheme combining an elastic cylinder symmetric
finite-difference modeling scheme with a 3D elastic finite-difference modeling
scheme has been presented. The coupling of the two methods is performed using
an elastic representation theorem for the stress field.

The scheme was tested for a plane-layered model giving good agreement
with a frequency-wavenumber solution. For models with more complicated 2D
and 3D geometries the hybrid scheme was compared with the full 3D elastic
finite-difference scheme. Also here the resulting shotgathers were in good
agreement. Modeling results indicate that the events not included in the hybrid
modeling are small and that acceptable results can be obtained with the hybrid
modeling scheme, even for 3D models with a complicated target volume.
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APPENDIX A

Cylinder symmetric elastic finite-difference modeling of overburden
response and downgoing field.

If the source is assumed to be in the water layer, then the source term is
curl free and only normal components of the source tensor contributes, thus it
is sufficient to calculate the Greens tensor Gijm(X..t|X,t") in the overburden to
obtain the downgoing field at x,. The Greens tensor is simplified due to the
cylindrical symmetry,

Gijmm(Xeot Xot") = Gijmn(Te —T5Z,t—t']0,2,0) (A-1)
where

r. =&+, rp =& +yD) . (A-2)

For the cylindrical-symmetric scheme used in the overburden the spatial
translation invariance is used and hence, r, = 0. Thus, the Green’s tensor
Gijmm(TerZ,t—t'0,2,,0) has to be calculated.

The set of coupled partial differential equations in cylindrical coordinates
for elastic wave propagation in an absorbing and anisotropic (TI) medium are
given in Mittet and Renlie (1996). The notation is simplified using 7 = t—t" and
thus Gjpn(r,z,t—t'10,2,,0) = Gijn(,7,2]Z;). Assuming a non-absorbing and

isotropic medium with a spherically symmetric source being a band-limited delta
function in space and time the equations to solve become

An(™,7,2]2) = p(t,2) "} [0,Grrm(Y, 7,2 | Z5)

+ (U/D[Gn(™:7,2|Z) — Gpomm(®>752|29) + 8,Grum(T,7,2(Z9]

A, 7,212) = p(1,2) "0, (T, 7,2 | Z9)

+ 0,Gun(™7,2|2) + (UDGppun(r,7,2|2)] (A-3)

and the Green’s tensor components are obtained by a temporal integration of the
equations

02G,,n(1,7,2|2) = NT,Z2)[0,Amn(T,7,2|Z) + 9,A,0m(1,7,2|Zy)
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2Gpomm(r,7,2|2) = NT,2)[8,A (T, 7,2]2) + 8, A,n(T,7.2]Z,)
+ (UMD Apm(r,7,2|2)] + 2u(r,2)(1/D)A (1, 7,2] 2)
+ 3M(z)(1/271)6(1)8(z~2)8(7)

G mn(r,7,2(2) = N1,2)[8,An(1,7,2]2)) + 0,A,(T,7,2]2,)

+ (/DA n(1,7,2|2)] + 2u(r,2)d,A,,,.(T,7,2

z)
+ 3M(z)(1210)3(1)3(z~2)5(r) |,
3G (.72 [29) = p(r,D[0,Amn(r,7,2]2) + 0.A,n(r,7,2]2)] , (A-4)
where the bulk modulus M(z,) in general is
M(z,) = Nz,) + 2/3)u(z,) , (A-5)

with u(z,) equal to zero if the source is located in the water layer. No
summation over repeated indices r and z are intended in equation (A-3) and
equation (A-4). The numerical implementation is performed on a staggered grid,
using high-order derivative operators (Holberg, 1987). The time integration is
performed to second order. Several implementations of the temporal delta
function 6(t—t") were tested. A pure spike with amplitude 1/At at time t’ gave
artifacts. Starting from the delta-function definition,

o(t—t") = (1/n/mlim_o(1/+fe)et 7" (A-6)
gave a smoother and much better solution. The parameter e was chosen so small
that 6(t—t") represented a signal with a very high frequency content, but still
within the frequency range which could be solved by the high-order finite-

difference scheme.

With the Green’s tensor known, equation (6) can be used to calculate the
pressure response from the overburden at x, given a source signature S(t),

l+
Px.0) = —(119) | dt' | dx'Gyn(xt—t' [x/,006(x' —x)S(t) . (A7)
0
The Green’s tensor also gives the stress components at x,,

.
0ixat) = (13) | dt' | &x'Guxt—t'|x",0)6(x'—x)S(t') . (A-8)
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acceleration components ad and al can be calculated from the equation of
motion.

However, the downgoing field at x. is needed on a surface and in
Cartesian coordinates. The symmetry properties of the downgoing field is used

to obtain the complete boundary condition for the 3D simulation in the target
volume,

a‘Xj(xC) = ai(xc7yC’ZC) = a?(rc’zc)cos(o) K

al(x) = al(X.,¥e,z) = aj(r.,z)sin() ,

(A-9)
(XD = 6(XeYe,z) = 11T, z)cos(d)
Hx) = §(Xe,Ye2) = (T, z)sin(@)
where
ro = VJ(x¢ +yd)
cos(f) = x./r. ,
sin(f) = y/r, . » (A-10)

APPENDIX B
3D elastic finite-difference modeling of target volume response

The set of coupled partial differential equations for 3D elastic wave
propagation are given in Mittet et al. (1988). The medium parameters are
staggered as discussed in Mittet and Renlie (1996). The implementation of the
boundary condition is reported in Mittet (1994). Let all indices run over their
Cartesian values x, y and z and use the Einstein summation convention.
Equation (2) is solved by first finding the auxiliary field Ay,

Ao t—t'[x',0) = p 7' (%), G ym(X,t—t'|x",0) . (B-1)

The components of the elastic Greens tensor Gy, is then given by
temporal integration of the equation,
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where the Hooke’s tensor is
Cijmn(X) = >\(X)6ij6mn + w00 + 6i0jm) - (B-3)

The numerical implementation is, as'for the cylindrical-symmetric
scheme, performed on a staggered grid, using high order derivative operators.
The time integration is performed to second order.

With the Green’s tensor known, equation (7) can be used to calculate the

upgoing response from the target volume at x; given the downgoing field at x;
as boundary condition,

[+
) = |t | dx'Guux,t—t [x',0BLK 1) (B-4)
0
where the boundary condition Bd.(x,0) is,

Bo.(x,t) = S dS(XIIS(X —X N2 (X, D) + 90X —X)G(X.,0] B-5)
S

With the upgoing stress components known at x;, the reduced traction
components ty(x.,t), ty(X;,t) and t;(x.,t) can be calculated from equation (5) and
the upgoing acceleration components ay(x,t), ay(x;,t) and a,(x;t) can be
calculated from the equation of motion.

APPENDIX C

Cylinder symmetric elastic finite-difference modeling of upgoing field

If the receivers are assumed to be in the water layer, then it is sufficient
to calculate G,,;;(X,,t|x,t') in the overburden to obtain the field at the receivers
given the boundary condition for the upgoing field at x/. Using spatial
reciprocity give,

Gmmij(xr,tlxé’tl) = Gijmm(xé’tlxnt’) s (C'l)
which implies that the same numerical scheme can be used to calculate

Gijmm(Xe,t| X,,t") as was used to calculate Gy, (X,,t| X,t'), since there is a spatial
translation invariance in the nlane-lavered overburden. The coordinate x_ can he
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The pressure response at the receivers due to the part of the field
interacting with the target volume is given by equation (7),

t*
Pyx.) = —(1/3) | dt' § d%/Gomyxot—t' |X OBYXY) (C-2)
0
where the boundary condition Bj(x,t) is
Bii(x,t) = s dS(x)[6(x—x)naj(x,t) + 3;0(xX—xX)t(X,0] - (C-3)
S .

Here the boundary condition is given by the 3D finite-difference modeling
and the Green’s tensor by a cylindrical-symmetric finite-difference modeling and
an expansion to Cartesian coordinates using the symmetry properties of the
Green’s tensor in the overburden.






